A computational study of the quantum transport properties of a Cu-CNT composite.
نویسندگان
چکیده
The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.
منابع مشابه
Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study
Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...
متن کاملRole of Intensive Milling on Microstructural and Physical Properties of Cu80Fe20/10CNT Nano-Composite
Carbon nano-tube (CNT) reinforced metal matrix nano-composites have attracted a great deal of attention in recent years due to the outstanding physical and mechanical properties of CNTs. However, utilizing CNT as reinforcement for alloy matrixes has not been studies systematically and is still a challenging issue. In the present study, Cu80Fe20/10CNT nanocomposite was synthesized by mechanical ...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملA computational study of the quantum transport properties of a Cu–CNT composite† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cp01470k Click here for additional data file.
Our density functional theory (DFT) calculations were performed using the PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional1 and double-zeta plus polarization basis set of SIESTA-type numerical orbitals as implemented in the ATK package2. London dispersion interactions were included in the total bonding energy as proposed by Grimme3. The interfacial strength4 (ideal work of separatio...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 28 شماره
صفحات -
تاریخ انتشار 2015